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1 Primitive Notions

There are four building blocks in any model of consumer choice: the consumption set, the feasible
set, the preference relation and the behavioral assumption. The combination of these blocks will
build the perception of a given problem and how to approach it.

The consumption set can be interpreted as a set X that represents the alternatives, or com-
plete consumption plans that a consumer can conceive; the consumption set is also called the choice
set. Let xi ∈ R represent the number of units of good i, where x = x1, ..xn is a consumption
bundle or a consumption plan. It follows that a consumption bundle x ∈ X is represented by a
point x ∈ Rn, where we usually can assume that the consumption is the positive orthant of the
consumption set, X = Rn+.

Properties of the consumption set:

1. X ⊆ Rn+,

2. X is closed,1

3. X is convex,2

4. 0 ∈ X

It follows that we need to define a feasible set as the set of consumption bundles that are
conceivable and obtainable given a consumer’s circumstances. Thus, we can say that the feasible
set is defined as B ⊂ X.

A preference relation specifies the limits, if any, on the consumer’s ability to specify her
tastes for different objects of choice. Finally, the behavioral assumption specifies the guiding
principle the consumer uses to make a choice. In general, we suppose that the consumer seeks to
identify and select an available alternative that is most preferred according to her personal tastes.

2 Preferences and Utility

2.1 Preference Relations

Consumer preferences are characterized axiomatically, where these axioms of consumer choice
give a formal mathematical expression to the fundamental aspects of consumer behavior and atti-
tudes towards the objects of choice. Together, they formalize the belief that consumers can choose
and that choices are consistent in a particular way.

We represent consumer preferences by the binary relation �, defined on the consumption set,
X. Whenever x1 � x2, we say that x1 is at least as good as x2. The following axioms set forth
basic criteria with which the preference relation must conform:

Axiom 2.1. Completeness. ∀ (x1,x2) ∈ X : x1 � x2 ∨ x2 � x1

Axiom 2.2. Transitivity. ∀ (x1,x2,x3) ∈ X : x1 � x2 ∧ x2 � x3 =⇒ x1 � x3

1S is a closed set if its complement Sc is an open set. Sc is open if ∀ x ∈ Sc ∃ ε > 0 : Bε(x) ⊂ Sc. Where Bε(x)
denotes the open ball of radius ε centered at x.

2S ⊂ Rn is a convex set if ∀ (x1,x2) ∈ S we have tx1 + (1− t)x2 ∈ S.
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Axiom 1 formalizes the notion of the consumer being able to make choices, while Axiom 2
provides a formal notion for the requirement that the consumer choices have to be consistent. In
other words that the consumer can rank any finite number of elements in the consumption set, X,
from best to worse (without ruling out the possibility of ties).

Definition 2.1. The binary relation � on the consumption set X is called a preference relation
if it satisfies Axioms 1 and 2.

Definition 2.2. The binary relation � on the consumption set X is called a strict preference
relation, and it is defined as:

x1 � x2 ⇐⇒ x1 � x2 ∧ x2 � x1

Definition 2.3. The binary relation ∼ on the consumption set X is called an indifference rela-
tion, and it is defined as:

x1 ∼ x2 ⇐⇒ x1 � x2 ∧ x2 � x1

With these definitions we can finally establish that for any pair (x1,x2), exactly one of three
mutually exclusive possibilities holds: x1 � x2 or x2 � x1, or x1 ∼ x2. Bearing this condition in
mind, we can proceed to define some specific sets as a function of a single consumption alternative.

Definition 2.4. Let x0 be any point in the consumption set X. Relative to that point, we can
define the following subsets of X:

1. � (x0) ≡ {x|x ∈ X,x � x0} Called “at least as good” set.

2. � (x0) ≡ {x|x ∈ X,x0 � x} Called “no better than” set.

3. � (x0) ≡ {x|x ∈ X,x � x0} Called “preferred to” set.

4. ≺ (x0) ≡ {x|x ∈ X,x0 � x} Called “worse than” set.

5. ∼ (x0) ≡ {x|x ∈ X,x ∼ x0} Called “indifference” set.

Now we can continue to express regularity conditions on the preferences in order to avoid
irregular behavior on choice making. From now on, we set X = Rn+:

Axiom 2.3. Continuity. ∀ x ∈ Rn+, the “at least as good as” set , � (x0), and the “no better
than” set, � (x0), are closed in Rn+.

This axiom implies that if � (x0) is closed in Rn+, � (x0) is open in in Rn+. Moreover, since
� (x0) and � (x0) are closed, so is ∼ (x0). The continuity axiom guarantees that there are no
sudden jumps on the consumption set.

To efficiently depict the view that a consumer may always choose something, or that there is
some arrangement to a given bundle that she would prefer over another one, we can make use of
another axiom. Denote Bε(x

0) as the open ball of radius ε centered at x0:

Axiom 2.4. Local non-satiation. ∀ x0 ∈ Rn+ ∧ ∀ ε > 0,∃ x ∈ Bε(x0) ∩ Rn+ : x � x0

Local non-satiation requires a preferred nearby bundle to always exist, although it does not
rule out the possibility of that bundle to involve less of one or even all commodities. We can add
the assumption that a consumer always prefers more than less by including strict monotonicity. If
the bundle x0 contains at least as much of every good as does x1, we write x0 ≥ x1, while if it
contains strictly more of every good than x1 we write x0 >> x1.
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Axiom 2.5. Strict monotonicity. ∀ x0,x1 ∈ Rn+, if x0 ≥ x1 then x0 � x1, while if x0 >> x1

then x0 � x1

Finally, we need an axiom to deal with the possibility of a non-convex region ruling out convex
combinations of the ∼ (x0). We can deal with the problem by imposing a final assumption on
preferences:

Axiom 2.6. Convexity. x1 � x0 =⇒ tx1 + (1− t)x0 � x0 ∀ t ∈ (0, 1)

Axiom 2.7. Strict convexity. x1 � x0 ∧ x1 6= x0 =⇒ tx1 + (1− t)x0 � x0 ∀ t ∈ (0, 1)

Any of the concavity axioms along with the previous set of axioms on preferences will roll
out concave preferences and therefore, well behaved preferences that establish a consistent choice
behavior. One of the most important implications of convexity is that it allows to establish a
marginal rate of substitution by evaluating the absolute value of the slope of the indifference
curve.

If preferences are strictly monotonic, any form of convexity requires the indifference curves to
be at least weakly convex-shaped relative to the origin. This condition requires the marginal rate of
substitution not to increase as the consumer moves from one bundle to the other. In other words,
this set of conditions imply that the consumer is no more willing to give up one good for the other
when the good shows high degrees of asymmetry in terms of its marginal rate of substitution.

In summary, we say that the axioms of completeness and transitivity describe a consumer
that makes consistent comparisons amongst alternatives. The axiom of continuity is intended to
guarantee the existence of well defined “at least as good” and “no better than” sets, and its mainly
mathematical. All other axioms work to fully characterize a consumer and her taste over different
objects of choice. Typically, it is required for her to display some form of non-satiation, either weak
or strong, and some bias in favor of balancing consumption, either weak or strong.

2.2 The Utility Function

The utility function has no other purpose than being a vice to summarize the information contained
in the consumer’s preference relation:

Definition 2.5. Utility function. A real valued function u : Rn+ → R is called a utility function
representing the preference relation �, if ∀ (x0,x1) ∈ Rn+, u(x0) ≥ u(x1) ⇐⇒ x0 � x1.

It is clear from this definition that if the utility function is to represent a preference relation,
it must assign higher values to preferred bundles. In general, a binary relation that is complete,
transitive and continuous can always be represented by a continuous real valued utility function.
Nevertheless, we will impose more stringent conditions:

Theorem 2.1. Existence of a utility function. If the binary relation � is complete, transitive,
continuous and strictly monotonic, ∃ u : Rn+ → R, which represents �.

It follows that existence does no imply uniqueness. In the case of utility functions, we can have
an arbitrarily large number of functions that comply with the rules we have imposed on them.
The only requirement is that they rank preferences in the same order as the preference relation.
Moreover, we also have that transformations to utility functions can be made without altering such
ordering properties:

Theorem 2.2. Invariance of the utility function to positive monotonic transformations.
Let � be a preference relation on Rn+ and suppose u(x0) is a utility function that represents it. Then
v(x0) also represents � if and only if v(x0) = f(u(x0)) for every x0, where f : R → R is strictly
increasing on the set of values taken by u.
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As with the preference relation, we can have several useful properties that apply to properly
defined utility functions:

Theorem 2.3. Let � be represented by u : Rn+ → R. Then:

1. u(x) is strictly increasing if and only if � is strictly monotonic,

2. u(x) is quasiconcave if and only if � is convex,3

3. u(x) is strictly quasiconcave if and only if � is strictly convex

With the properties of utility functions defined, we can now introduce the proper vocabulary.
The first order partial derivative, ∂u(x)

∂x , is called the marginal utility of good i. As mentioned
before, we can measure the degree with which the consumer substitutes between goods along the
indifference set. Formally, the marginal rate of substitution of good j for good i (MRSij(x)) is
given by the ratio of their respective marginal utilities:

MRSij(x) =
∂u(x)/∂xi
∂u(x)/∂xj

(1)

Whenever the marginal utilities are strictly positive the MRSij is also positive, and it can be
interpreted as the rate at which a unit of good j can be exchanged for a unit of good i with no
effect in the consumer’s utility.

When u(x) is continuously differentiable on u : Rn++, and preferences are strictly monotonic,
the marginal utility of every good is virtually always positive, ∂u(x)/∂xi) > 0 for all bundles x and
all i = 1, ..., n. When preferences are strictly convex, the marginal rate of substitution between two
good is always strictly diminishing along any level of the surface of the function. In other words,
for any quasiconcave utility function, its Hessian matrix, H(x), satisfies:

yTH(x)y ≤ 0; ∀ y : ∇u(x) · y = 0

If this inequality is strict, then moving from x in any direction y that is tangent to the surface,
will reduce utility.

3 The Consumer’s Problem

When establishing the four building blocks required to model consumer choice, we have assumed
that the consumer has a consumption set, X = Rn+, that contains all conceivable options in con-
sumption. Her inclinations towards each of those combination are described by the preference
relation, �, defined on Rn+. The consumer’s given circumstances can limit her ability to achieve
certain combinations, and we acknowledged this limitation by defining a feasible set, B ⊂ Rn+.
Finally, we will make the assumption that a consumer is motivated to choose the most preferred
option in the feasible set according to her preference relation. Formally, she seeks:

x∗ ∈ B : x∗ � x ∀ x ∈ B

To deal with this problem, we will assume that the preference relation, �, is complete, transitive,
continuous, strictly monotonic and strictly convex on Rn+. Thus, it can be represented by a real-
valued utility function, u, that is continuous, strictly increasing and strictly quasiconcave on Rn+.

3f : D → R is a concave function if ∀ x1,x2 ∈ D : f(xt) ≥ tf(x1) + (1 − t)f(x2) ∀ t ∈ [0, 1]. f : D → R is a
quasiconcave function if ∀ x1,x2 ∈ D : f(xt) ≥ min{f(x1), f(x2)} ∀ t ∈ [0, 1]. The condition is strict if the relation
holds without equality.
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We say that the consumer operates within a market economy, where each good i has a strictly
positive price pi > 0 ∀ i = 1, ..., n. We also assume that the size of the economy is big enough, so
the choices of an individual consumer will not affect the price of any commodity. Therefore, the
price vector p >> 0 is fixed from the consumer’s perspective.

The consumer is endowed with a fixed money income, y ≥ 0, which she uses to purchase goods
in the economy. More specifically, she will purchase xi units of each good at price pi, and therefore
she spends pixi acquiring each good. It follows that the total expenditure cannot exceed the her
income,

∑
i pixi ≤ y ⇐⇒ p · x ≤ y. Formally, we can include all these assumptions in our

definition of the feasible set, B, which now call the budget set.

B = {x|x ∈ Rn+, p · x ≤ y}

Therefore, the budget set gives us all possible bundles that can be afforded with a fixed level of
income, y.

Now, we have all the tools required to solve the consumer problem in the market economy. With
our assumptions we can write the consumer choice problem as the following utility maximization
problem:

max
x∈Rn+

u(x), s.t. p · x ≤ y (2)

If x∗ solves this problem, we know that x∗ ≥ x ∀ x ∈ B, which means that x∗ � x ∀ x ∈ B. In
line with our four building blocks assumptions, we can list several properties for this maximization
problem:

1. The utility function u(x) is real-valued and continuous,

2. The budget set is a non-empty (0 ∈ Rn+), closed, bounded (p > 0), and thus compact set,4

3. By the Weirstrass existence theorem, we have that a maximum over u(x∗) exists,5

4. Since B is convex and the objective function is strictly concave, the maximizer of u(x∗) is
unique,

5. Since preferences are strictly monotonic, the solution, x∗, satisfies the budget constraint with
equality lying on the boundary of the budget set. This condition implies that when y > 0,
and because x∗ ≥ 0 but x∗ 6= 0, x∗i ≥ 0 for at least one good i

The solution to this maximization problem can be written as function of the consumer’s prefer-
ences, the price vector and her budget: x∗i = xi(p, y), i = 1, ..n, or in vector notation x∗ = x(p, y).
When viewed as a function of (p, y), we denote the optimal quantities chosen by the consumer as
Marshallian (Walrasian) demand functions.

We can now strengthen the requirements on the utility function to use calculus tools to explore
demand behavior. If we now require u(x) to be differentiable, we can solve the maximization
problem using the the Lagrangian method:

L(x, λ) = u(x)− λ[p · x− y]

4A set S in Rn is called bounded if it is entirely contained within some ε-ball (either open or closed); that is S is
bounded if ∃ ε > 0 : S ⊂ Bε((x)) for some (x) ∈ R. A set S′ is compact if S′ is both closed and bounded.

5Let f : s → R be a continuous real-valued mapping where S is a non-empty compact subset of R. Then,
∃ x∗ ∈ S : f(x′) ≤ f(x) ≤ f(x∗) ∀ x ∈ S.
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We can apply the Kuhn-Tucker method to characterize the solution. If x0 >> 0 solves the
maximization problem, then there exists a λ∗ ≥ 0 such that (x∗, λ∗)6 satisfies the following condi-
tions:

∂L
∂xi

=
∂u(x∗)

∂xi
− λ∗pi = 0, i = 1, ..., n,

p · x∗ − y ≤ 0,

λ∗[p · x∗ − y] = 0

By strict monotonicity the budget constraint is satisfied with equality, so we can reduce the first
order conditions to:

∂L
∂x1

=
∂u(x∗)

∂x1
− λ∗p1 = 0,

...

∂L
∂xn

=
∂u(x∗)

∂xn
− λ∗pn = 0,

p · x∗ − y = 0

By strict monotonicity we have that ∂u(x∗)/∂xi > 0 for some i. Since p >> 0, the Lagrangian
multiplier will be strictly positive at the solution because λ∗ = ui(x

∗)/pi > 0. It follows that for
all j, ∂u(x∗)/∂xj = λ∗pj > 0, so the marginal utility is proportional to the price for all goods at
the optimum. If we combine these conditions we can conclude that at the optimum:

∂u(x∗)/∂xj
∂u(x∗)/∂xk

=
pj
pk

(3)

This expression indicates that the marginal utility of any two goods must be equal to the ratio
of prices at the optimum. In other words, that the slope of the indifference curve (plane) must be
equal to that of the budget constraint, and that the optimal quantity lies on the boundary, rather
than in the interior of the budget set.

Theorem 3.1. Sufficiency of Consumer FOCs. Suppose that u(x) is continuous and quasi-
concave on Rn+, and that (p, y) >> 0. If u is differentiable at x∗, and (x∗, λ∗) >> 0 solves the
consumer FOCs, then x∗ solves the maximization problem at prices p and income y.

This theorem implies that all we need to solve the consumer’s problem is to find a solution
(x∗, λ∗) >> 0 for the FOCs of the maximization problem.

Until now we have made several assumptions to ensure that the Marshalian demand, x(p, y)
will be continuous on Rn++. Moreover, we would like to examine the slope of the demand curves in
detail, and therefore we would like x(p, y) to be differentiable:

6Let f(x) and gj(x), j = 1, ...,m be continuous real-valued functions defined over some domain D ∈ Rn. Let x∗

be an interior point of D and suppose that x∗ maximises f(x) on D subject to the constraints gj(x) ≤ 0, j = 1, ...,m,
and that f and each gj are continuously differentiable on an open set containing x∗. If the gradient vectors ∇gj(x∗)
associated with constraints j that bind at x∗ are linearly independent, then there is a unique vector λ∗ ∈ Rn, such
that (x∗, λ∗) satisfies the Kuhn-tucker conditions:

∂L(x∗, λ∗)

∂xi
=
∂f(x∗)

∂xi
−

∑
j

λ∗j
∂gj(x∗)

∂xi
= 0, i = 1, ..., n

λ∗j ≥ 0, gj(x∗) ≤ 0, λ∗gj(x∗) = 0, j = 1, ...,m
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Theorem 3.2. Let x∗ >> 0 solve the consumer’s maximization problem at prices p0 >> 0 and
income y0 > 0. If

1. u is twice continuously differentiable on Rn++,

2. u(x∗)/∂xi > 0 for some i = 1, ...n, and

3. The bordered Hessian of u has a non-zero determinant at x∗,

then, x(p, y) is differentiable at (p0, y0).

4 The Indirect Utility Function

u(x) is defined over a consumption set, X, and represents the consumer’s preferences directly, hence
it is called the direct utility function. Given prices p and income y, the consumer chooses the
bundle x(p, y) that maximizes the direct utility function. The relationship between prices, income
and the level of maximized utility obtained can be expressed as:

v(p, y) = max
x∈Rn+

u(x), s.t. : p · y ≤ y (4)

The function v(p, y) is known as the indirect utility function, and it is the maximum-
value function corresponding to the consumer’s utility maximization problem. In other words, the
maximum level of utility that can be achieved as a function of prices and income that is obtained
by choosing x(p, y), would be given by :

v(p, y) = u(x(p, y)) (5)

It follows directly that the indirect utility function has several properties:

Theorem 4.1. If u(x) is continuos and strictly increasing on Rn+, then v(p, y) is:

1. Continuous on Rn++ × Rn+,

2. Homogenous of degree zero in (p, y)7,

3. Strictly increasing in y,

4. Decreasing in p,

5. Quasiconcave in (p, y), and more importantly

6. Roy’s identity: if v(p, y) is differentiable at (p0, y0) and ∂v(p0, y0)/∂y 6= 0, then

xi(p
0, y0) = −∂v(p0, y0)/∂pi

∂v(p0, y0)/∂y
, i = 1, ..., n. (6)

7A real-valued function f(x) is called homogeneous of degree k if f(tx) ≡ tkf(x) ∀ t > 0.
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5 The Expenditure Function

We have covered the consumer’s problem in terms of choosing the bundle that maximizes her utility
given a certain level of prices and income. We can also ask: what is the minimum level of money
expenditure required to achieve a certain level of utility? The answer can be found by defining
a level of expenditure as e = p · x. It follows that e∗ is the the minimum expenditure level that
achieves utility u at prices p. If the bundle that minimizes that expenditure is given by xh, then
e∗ = e(p, u) = p · xh.

Formally, we define the expenditure function as a minimum-value function:

e(x, u) = min
x∈Rn+

p · x, s.t. u(x) ≥ u (7)

for all p >> 0, where
e(p, u) = p · xh (8)

The quantities that satisfy this optimal set are a type of demand, just as the ones that solve
that maximization problem. The difference is that these quantities are not directly observable.
These are known as Hicksian demands and they reflect the effect of how a consumer substitutes
goods when there are changes in prices in order to maintain a fixed level of utility.

The expenditure function also has some important properties. Let’s denote the set of attainable
utility levels as U = {u(x)|x ∈ Rn+}, then we have:

Theorem 5.1. If u(•) is continuous and strictly increasing, then e(p, u) is:

1. Zero when u takes on the lowest level of utility in U ,

2. Continuous on its domain Rn++ × U ,

3. For all p >> 0, strictly increasing and unbounded above in u,

4. Increasing in p,

5. Homogenous of degree 1 in p >> 0,

6. Concave in p >> 0

If, in addition, u(•) is strictly quasiconcave, we have

7. Shephard’s lemma: e(p, u) is differentiable in p at (p0, u0) with p0 >> 0 and

∂e(p0, u0)

∂pi
= xhi (p0, u0), i = 1, ..., n (9)

6 Relationship Between Indirect Utility and Expenditure

Despite representing different concepts, both the indirect utility and the expenditure functions are
closely related by the underlying preferences of the consumer, a statement that can also be applied
for Marshallian and Hicksian demands. In general, we have that:

Theorem 6.1. Let v(p, y) and e(p, u) be the indirect utility and expenditure function for some
consumer whose utility function is continuous and strictly increasing. Then for all p >> 0, y ≥ 0,
and u ∈ U :
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1. e(p, v(p, y)) = y.

2. v(p, e(p, y)) = u.

The power of this theorem is that it allows to derive any of the consumer respective functions
with only one optimization outcome. Going from one result to the other it’s a matter of specifying
the proper inverse function of each respective relationship. Moreover, we can also derive a direct
relationship between quantities demanded:

Theorem 6.2. If a consumer’s preferences can be represented by a utility function that is continu-
ous, strictly increasing, and strictly quasiconcave in Rn+, we have the following relationships between
the Hicksian and Marshallian demand functions for p >> 0, y ≥ 0, u ∈ U , and i = 1, ..., n:

1. xi(p, y) = xhi (p, v(p, y))

2. xhi (p, u) = xi(p, e(p, u))

In words, this theorem says that the Marshaling demand at prices p and income y is equal to
the Hickcsian demand at prices p and the utility level that is the maximum that can be achieved at
(p, y). On the other hand, Hicksian demand at prices p and utility u is the same as the Marshallian
demand evaluated at those prices and an income level equal to the minimum expenditure necessary
to achieve that utility level.

7 Properties of Consumer Demand

Until now we have made several assumptions about consumers that allowed us to model their
behavior in a market economy. If our assumptions about preferences, objectives and circumstances
are to be true, we should be able to predict the demand behavior in theory, and thus how it
compares with what we observe in reality.

7.1 Relative prices and real income

When analyzing economic goods, it is ideal to take away the monetary component, as money is
mostly a trading commodity. We define the relative price of a given good i as the number units
that must be foregone of a good j to acquire one unit of the good in question. If pi and pj are the
monetary prices of goods i and j, respectively. We define the relative price, p̄ij , as the ratio:

p̄ij =
pi
pj

(10)

For real income, we use a similar notion to avoid the distortion of money and define real income
as the potential of the consumer to acquire goods. We normalize this notion by examining her
purchasing power over one good. If the consumer has a budget y, her real income, ȳi, is given by:

ȳi =
y

pi
(11)

If we revisit our result from utility maximization, we can see that only real prices and income
matters for the consumer, as equal changes in monetary prices and income will leave the demand
unchanged. This statement is the same as saying that the demand is homogenous of degree zero
in prices and income.
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Theorem 7.1. Homogeneity and budget balancedness. If consumer preferences can be repre-
sented by a utility function that is continuous, strictly increasing, and strictly quasiconcave in Rn+,
the consumer demand function xi(p, y), i = 1, .., n, is homogeneous of degree zero in all prices and
income, and it satisfies budget balancedness, p · x(p, y) = y ∀ (p, y).

The homogeneity condition allows to effectively eliminate the monetary condition from the con-
sumer problem. This is generally done by arbitrarily choosing one of the n goods as the numéraire
to replace money. If its price is pi, we can set t = 1/pi, and using the homogeneity property we
have:

x(p, y) = x(tp, ty) = x

([
p1
pi
, ..., 1, ...,

pn
pi

]
,
y

pi

)
(12)

This property entails that the demand for each of the n goods in the market, depends only on
n− 1 relative prices and the consumer’s real income.

7.2 Income and Substitution Effects

Another important property of the demand function is that we can ask questions about the con-
sumer’s behavior when changes occur in the economy. When the price of a given good declines,
there might be two reasons why one should expect changes in the quantities demanded either of
that good in specific, or for one or more of the other goods in the optimal bundle. 1) That good be-
comes relatively cheaper compared with the rest, and we should expect the consumer to substitute
some of the relatively cheaper good quantity with some of the relatively more expensive ones; this is
known as substitution effect (SE). 2) When the price of any good declines, the consumer’s total
command over all goods is effectively increased, allowing her to change purchases in the best way
possible according to her preferences; this effect on quantity demanded as a result of the increased
purchasing power is known as income effect (IE). Both of these effects will comprise the total
effect (TE).

As we might expect, both Hicksian and Marshallian demands will provide us with this infor-
mation. The relationship between the total, income and substitution effect can be summarized in
what is known as the Slutsky equation or the Fundamental Equation of Demand Theory.
Making the usual assumption about a well defined utility function we have:

Theorem 7.2. Let x(p, y) be the consumer’s Marshaling demand system. Let u∗ be the level of
utility the consumer achieves at prices p and income y. Then,

∂xi(p, y)

∂pj
=
∂xhi (p, u∗)

∂pj
− xj(p, y)

∂xi(p, y)

∂y
, i, j = 1, .., n (13)

with

TE =
∂xi(p, y)

∂pj

SE =
∂xhi (p, u∗)

∂pj

IE = −xj(p, y)
∂xi(p, y)

∂y

Despite not being obvious at first sight, the Slutsky equation will give us a close form tool to
evaluate the behavior of the demand function. Consider the case when we want to see the effect of
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a price change of one good into its own demand. From our previous theorem we have:

∂x(p, y)

∂pi
=
∂xhi (p, u∗)

∂pi
− xi(p, y)

∂xi(p, y)

∂y
(14)

The term on the right hand side is the slope of the Marshallian demand for good i. In other
words, the response of the quantity demanded to a change on its own price. To describe that
change, however, we need to know something about that first term on the right hand side. But
thinking about it carefully, we already know that that term is the slope of the Hicksian demand.
Despite being unobservable, we can use the Slutsky equation to link observable Mashalian demands
with their substation terms. In order to do so, we can use this starting point to establish demand
behavior:

Theorem 7.3. Negative own substitution terms. Let xhi (p, u) be the Hicksian demand for
goof i. Then

∂xhi (p, u)

∂pi
≤ 0 (15)

In words, that Hicksian demands are negatively slopped with respect to their own price. With
these notions on our hands, we are now prepared to state the generally known as law of demand,
where we can use some familiar terminology. A good is called normal if consumption increases
as income increases, when holding prices constant. A good is called inferior if consumption of it
declines as income increases, when holding prices constant.

Theorem 7.4. Law of Demand. A decrease in the own price of a normal good will cause quantity
demanded to increase. If an own price decrease causes a decrease in quantity demanded, the good
must be inferior.

To see how substitution effects play a role in the law of demand, we can use what we know
about Marshallian and Hicksian demands.

Theorem 7.5. Symmetric Substitution Terms. Let xhi (p, u) be the consumer’s system of
Hicksian demands and suppose that e(•) is twice continuously differentiable. Then,

∂xhi (p, u)

∂pj
=
∂xhj (p, u)

∂pi
, i, j = 1, ...n (16)

Furthermore, imagine we can arrange n2 substitution terms in the consumer’s entire demand
system into an n × n matrix, with the own-substitution terms on the diagonal and the cross sub-
stitution terms off-diagonal. According to our previous theorems, all elements along the principal
diagonal will be negative, and the matrix will be symmetric.8 Moreover, this matrix must be
negative semidefinite as well.9

8A matrix M is symmetric if M = M ′. The entries of a symmetric matrix are symmetric with respect to the
main diagonal, if the entries are written as M = (mij), then mij = mji ∀ i, j.

9A n× n matrix M is positive semidefinite (PSD)(negative semidefinite (NSD)) if ∀ z ∈ Rn,

zMz ≥ (≤)0

If the inequality is strict for all z 6= 0, then M is positive definite (PD) (negative definite (ND))

12



Theorem 7.6. Negative Semidefinite Substitution Matrix. Let xhi (p, u) be the consumer’s
system of Hicksian demands, and let

σ(p, u) =


∂xh1 (p,u)
∂p1

· · · ∂xh1 (p,u)
∂pn

...
. . .

...
∂xhn(p,u)
∂p1

· · · ∂xhn(p,u)
∂pn

 (17)

called the substitution matrix, contain all the Hicksian substitution terms. Then the σ(p, u) is
negative semidefinite.

Now we can use the properties of the Hicksian demands to explore the main assertions of the
law of demand. If we recall, the law states that changes in a good price will affect its demand in
a certain way, depending on the nature of the good. With these new tools, we can now go even
further and make claims about the entire system of substitution terms; we need not limit ourselves
to statements about own-price and income changes. Using the substitution matrix, we can explore
the effects of all price and income changes on the entire system of observable Marshallian demands.

Theorem 7.7. Symmetric and Negative Semidefinite Slutsky Matrix. Let xhi (p, u) be the
consumer’s Marshallian demand system. Define the ijth Slutsky term as

∂xi(p, y)

∂pj
+ xj(p, y)

∂xi(p, y)

∂y
(18)

and form the entire n× n Slutsky matrix of price and income responses as follows:

s(p, y) =


∂x1(p,y)
∂p1

+ x1(p, y)∂x1(p,y)∂y · · · ∂x1(p,y)
∂pn

+ xn(p, y)∂x1(p,y)∂y
...

. . .
...

∂xn(p,y)
∂p1

+ xj(p, y)∂x1(p,y)∂y · · · ∂xn(p,y)
∂pn

+ xn(p, y)∂xn(p,y)∂y

 (19)

Then s(p, y) is symmetric and negative semidefinite.

The requirements for consumer demand to satisfy homogeneity and budget balancedness, and
that the associated Slutsky matrix be symmetric and negative semidefinite, provide a set of re-
strictions on allowable values for the parameters in any empirically estimated Marshallian demand
system (as long as our assumptions seem realistic).

7.3 Elasticity Relations

To close the discussion on consumer demand, we examine the implications of the budget-balancedness
condition on the consumer’s choice subject to changes in price and income. From our previous dis-
cussion, recall that if xi(p, u) is the consumer’s Marshallian demand function, budget balancedness
says that the budget constraint must hold with equality at every set of prices and income, or

y =
∑
i

xi(p, u)pi = x(p, u) · p (20)

Since this condition holds with equality, we know that for any change in prices or income this
equality must hold. Therefore, we need to be able to establish how the consumers adapt to a given
change in order to maintain such equality. For this task, we make use of some useful definitions:
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Definition 7.1. Let xi(p, u) be the consumer’s Marshallian demand for good i. Then let

ηij ≡
∂xi(p, u)

∂y

y

xi(p, u)
(21)

εi ≡
∂xi(p, u)

∂pj

pj
xi(p, u)

(22)

and let

si ≡
pixi(p, u)

y
, so that

∑
i

si = 1 (23)

We call ηi the income elasticity of demand for good i, and it measures the percentage change
in the quantity of i demanded per one percent change in income. εij is called the price elasticity
of demand for good i, and it measures the percentages change on the quantity of i demanded per
one percent change in the price of good j. Whenever i = j, εij is called own-price elasticity of
demand for good i, while if i 6= j εij is called cross-price elasticity of demand for good i with
respect to pj . Finally si denotes the income share, or the proportion of the consumer’s income
that is spent purchasing good i.

Theorem 7.8. Aggregation in Consumer Demand. Let x(p, u) be the consumer?s Marshal-
lian demand system. Then the following relations must hold among income shares, price, and
income elasticities of demand:

1. Engel aggregation:
∑

i siηi = 1

2. Cournot aggregation:
∑

i siεij = sj , j = 1, ..., n

Putting together Theorems 10 through 17, we have set the ground for the logical implications
of utility maximizing behavior. Homogeneity provides insights about how demand responds to an
overall, equiproportional change in all prices and income simultaneously, and budget balancedness
requires that demand always exhaust consumer income. The Slutsky equation provides qualitative
information on how demand responds to general price changes, as well as analytically uncovering
properties of the unobservable components of the demand behavior subject to price changes: income
and substitution effects. Finally, aggregations allow us to examine how quantities demanded have
to adapt across the system of demand functions.

8 Revealed Preference

In the previous sections we have analyzed demand by assuming the consumer exhibits certain
characteristics in her preferences, (complete, transitive, and strictly monotonic), and subsequently
we derived analytically how we expect her to behave in a market economy, in a way that we can
observe and analyze. This type of analysis, however, relies on our assumptions on preferences and
how we contrast those with what we can observe in the real world economy.

We can, however, make assessments on consumer behavior based solely on observations and
without having to make assumptions ex-ante about preferences. The idea is that if a consumer
buys one bundle when she could buy another one, that bundle is said to be revealed preferred
to the second. Instead of imposing axioms on a consumer’s tastes, we make assumptions about the
consistency of her choices. Formally we say that:
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Definition 8.1. Weak Axiom of Revealed Preference (WARP). A consumer’s choice be-
havior satisfies WARP if for every distinct pair of bundles x0, x1 with x0 chosen at prices p0 and
x1 chosen at prices x1,

p0x1 ≤ p0x0 =⇒ p1x0 > p1x1 (24)

In other other words, whenever x0 is revealed preferred to x1, x1 is never revealed preferred to x0.

The most intuitive way to understand this axiom is to think about how a consumer can show
consistency in the bundles she chooses given a certain budget, y, and combination of prices, p.
The axiom says that x0 is revealed preferred to x1 whenever the consumer chooses x0 over x1,
whenever her budget allows her to choose between the two. She takes x1 if and only if she cannot
afford x0.

In addition to WARP, we have to make one more assumption about the consumer’s preferences.
Let x(p, y) be a choice function of the consumer (not a demand function). We say that for p >> 0,
the choice x(p, y) satisfies budget balancedness, p ·x(x, y) = y. With the combination of these two
requirements on consumers’ preferences, we get a set of remarkable implications.

Theorem 8.1. Revealed preferences and WARP. If a consumer satisfies WARP and budget bal-
ancedness, her choice function, x(p, y), satisfies the following properties:

1. x(p, y) is homogenous of degree zero in (p, y),

2. the Slutsky matrix of the choice function is negative semidefinite,

3. for two goods, the Slutsky matrix is symmetric

From this theorem, it is worth noting that if the choice function x(p, y) happens to be a utility-
based demand function, the it must satisfy WARP. It is tempting suggest that this relation holds
backwards, but that is not the case for more than two goods. For more than two goods, WARP and
budget balancedness imply neither symmetry of the Slutsky Matrix nor the absence of intransitive
cycles in the revealed preferred to relation.

This problem leads to the question, how can we strengthen WARP to get a theory of revealed
preference that is equivalent to the theory of utility maximization? That’s why we need the following
definition:

Definition 8.2. Strong Axiom of Revealed Preference (SARP). A consumer’s choice be-
havior satisfies SARP if for every sequence of bundles, x0,x1, ...,xk, where x0 is revealed preferred
to x1, and x1 is revealed preferred to to x2, ..., and xk−1 is revealed preferred to xk, it is not the
case that xk is revealed preferred to to x1.

With SARP we can now rule out any intransitive revealed preferences and therefore it can be
used to induce a complete and transitive preference relation �, for which will exist a utility function
that rationalizes that behavior.

To conclude this section we introduce one more axiom for revealed preferences that allows us
to examine revealed preferences without observing the entire set of bundles, as SARP requires:

Definition 8.3. Generalized Axiom of Revealed Preferences (GARP). A finite set of
observed price and quantity data satisfies GARP if and only if there exists a continuous increasing,
and concave utility function that rationalizes the data.

Although powerful, it is difficult to establish that observed data does not violate GARP. The
challenge is now to establish the acceptable conditions that allow to ignore minor violations of
GARP, and how algorithms are able to ignore such violation to efficiently derive the utility functions
that rationalize the observed data.
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9 Uncertainty

So far, our study of consumers and their choice behavior has been inserted in a deterministic world.
This condition implies that the consumer knows the prices of all commodities and knows that
any particular bundle can be obtained with certainty. In the real world, however, the consumer
is inserted in a reality of uncertainty where prices, accessibility, and income are subject to some
degree of uncertainty. It is necessary then, to evaluate how the consumer might behave in the
presence of uncertainty.

9.1 Preferences

When dealing with uncertainty we have to maintain our assumptions on preference relations, but
instead of consumption bundles we will work with preference relations over gambles. Let A =
{a1, ..., an} denote the finite set of outcomes. ai can denote consumption bundles, amount of
money (positive or negative), or anything at all. The idea is that ai involves no uncertainty.
Nevertheless, we use the set A as the basis for constructing gambles.

A simple gamble assigns a probability pi, to each outcome ai ∈ A. The basic properties
of probabilities hold, and we say that pi ≥ 0, and

∑
i pi = 1. We denote a simple gamble as

(p1 ◦ a1, ..., pn◦n). Formally:

Definition 9.1. Simple Gambles. Let A = {a1, ..., an} be the set of outcomes. Then GS , the set
of simple gambles (on A), is given by

GS ≡

{
(p1 ◦ a1, ..., pn◦n)|pi ≥ 0,

n∑
i=1

= 1

}
(25)

It follows that not all gambles are simple. The prime example is lotteries that provide as prize,
a ticket for the next lottery. These are called compound gambles. It is obvious that there is no
limit to the level of computing that such gambles involve. To simplify our treatment then, we will
limit our gambles to leave out any infinitely compound gambles, and require that all gambles must
result in an outcome in A.

We denote the set of all gambles, simple and compound, as G. For any gamble g ∈ G, then
g = (p1 ◦ g1, ..., pk ◦ gk), for some k ≥ 1 and some gambles gi ∈ G, where gi might be compound
gambles, simple gambles or outcomes.

The objects of choice under uncertainty are gambles. Analogous to the consumer theory case,
we can assume that the decision maker has preferences, �, over the set of gambles, G. As before,
we need to impose some axioms on the decision making process, called axioms of choice under
uncertainty for the preference relation �. We let ∼ and � denote “indifferent to” and “strictly
preferred to” relations induced by �. We have:

Axiom 9.1. Completeness. For any two gambles g and g′ in G, either g � g′ or g′ � g.

Axiom 9.2. Transitivity. For any three gambles g, g′ and g′′ in G, if g � g′ and g′ � g′′, then
g � g′′.

Since each outcome ai ∈ A is represented in G as a degenerate gamble, axioms (9.1) and (9.2)
imply that the finitely many elements of A are ordered by �. So we can further say w.l.o.g that
the elements in A are indexed as a1 � a2 � ... � an.

From this indexing process, it would be fair to say that no gamble is better than giving a1
with certainty, and that no gamble is worse than giving an with certainty. In other words, for any
gamble g, (α ◦ a1, (1− α) ◦ an) � g when α = 1; and g � (α ◦ a1, (1− α) ◦ an) when α = 0. So we
can establish our next axiom on continuity:
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Axiom 9.3. Continuity. For any gamble g in G, there is some probability, α ∈ [0, 1], such that
g ∼ (α ◦ a1, (1− α) ◦ an).

Axiom (9.3) implies that there is always a gamble that makes the consumer indifferent be-
tween getting the price or a linear combination (expectation) between the most and least preferred
outcomes in the outcome set. It seems natural to now deal with preferences between gambles:

Axiom 9.4. Monotonicity. For all probabilities α, β ∈ [0, 1],

(α ◦ a1, (1− α) ◦ an) � (β ◦ a1, (1− β) ◦ an) ⇐⇒ α ≥ β (26)

With this axiom, we say that a1 � an, which rules out the possibility of the consumer being
indifferent across the entire outcome set. Next, we have to consider the possibility of a consumer
begin indifferent across gambles:

Axiom 9.5. Substitution. If g = (p1 ◦ g1, ..., pk ◦ gk), and h = (p1 ◦ h1, ..., pk ◦ hk) are in G, and
if hi ∼ gi ∀ i =⇒ h ∼ g

Together with Axiom (9.1), Axiom (9.5) says that whenever an agent is indifferent between two
gambles, he must also be indifferent across all linear combinations between those two gambles. That
is, if g ∼ h, then by Axiom (9.1) g ∼ g. Axiom (9.5) implies (α◦g, (1−α)◦h) ∼ (α◦h, (1−α)◦g) = g.

We only need one more axiom to characterize the consumer’s choice under uncertainty. In
particular, we need to establish a rule on how, when a consumer considers a gamble, she should care
only about the effective probabilities that the gamble assigns to each outcome in A. To understand
this concept consider A = {a1, a2}, and the compound gamble yielding a1 with probability α,
and yielding a lottery ticket with probability (1 − α). The lottery itself is a simple gamble that
yields a1 with probability β and a2 with probability (1 − β). The probability of getting outcome
a1 has to consider both the probability of getting a1 the first time, or with the lottery. That is,
the probability of a1 is α + (1 − α)β, while the probability of getting a2 is (1 − α)(1 − β). In
this little example, to say that the decision maker cares only about the effective probabilities, is
equivalent to say that the consumer is indifferent between the compound gamble or the simple
gamble (α+ (1− α)β ◦ a1, (1− α)(1− β) ◦ a2) that it induces.

Formally, we say that for any gamble g ∈ G, if pi denotes the probability assigned to ai by g,
then g induces the simple gamble (p1 ◦ a1, ..., pn ◦ an) ∈ GS . Every g ∈ G induces a unique
simple gamble:

Axiom 9.6. Reduction to simple games. For any gamble g ∈ G, if (p1 ◦ a1, ..., pnan) is the
simple gamble induced by g, then for (p1 ◦ a1, ..., pnan) ∼ g.

Note that Axiom (9.6) together with Axiom (9.2) will lead to individual preferences over all
gambles (simple and compound) to be completely determined by his preferences over simple gam-
bles.

9.2 Von Neumann-Morgenstern Utility

Following the same steps as we did for choices under certainty, we can start describing the decision
making process by an appropriate utility function. Suppose that u : G → R is a utility function
representing � on G. So, for every g ∈ G, u(g) denotes the utility number assigned to gamble g. For
every i, u assigns the number u(ai) to the degenerate gamble (1 ◦ a), in which outcome ai occurs
with certainty.
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Definition 9.2. Expected Utility Property. The utility function u : G → R has the expected
utility property if, for every g ∈ G,

u(g) =
n∑
i=1

piu(ai) (27)

with (p1 ◦ a1, ..., pn ◦ an) as the simple gamble induced by g.

That is, the utility of the gamble is equal to the sum of effective probabilities of g yielding
u(ai). It follows that if gs = (p1 ◦a1, ..., pn ◦an) is a simple gamble, then because the simple gamble
implied by gs is gs itself, it is true that:

u(p1 ◦ a1, ..., pn ◦ an) =

n∑
i=1

piu(ai), ∀ (p1, ..., pn) (28)

The function u, then, is completely determined on all of G by the values it assumes on the finite
set of outcomes, A.

If an individual’s preferences are represented by a utility function with the expected utility
property, and if that person always chooses his most preferred alternative available, then that
individual will choose one gamble over another if and only if the expected utility of the one exceeds
that of the other. Consequently, such an individual is an expected utility maximiser.

It becomes clear that the expected utility function assumption imposes a great degree of limi-
tations on preferences, so they can be expressed as linear combinations of independent utilities. To
maintain a difference between such functions, we define utility functions possessing the expected
utility property as von Neumann-Morgenstern (VNM) utility functions.

Theorem 9.1. Existence of a VNM Utility Function on G. Let preferences � over gambles
in G satisfy Axioms (9.1)-(9.6). Then there exists a utility function u : G → R representing � on
G, such that u has the expected utility property.

The VNM utility function allows to have a mapping between the preferences of an individual
and a given set of gambles. For instance, an individual is indifferent between gambles if her VNM
utility has the same value for both. Nevertheless, and unlike the consumer theory we specified
before, the VNM utility is not only an ordinal instrument, and thus it cannot be manipulated as
regular utility functions. Consider A = {a, b, c}, where a � b � c, and that � satisfies Axioms
(9.1)-(9.6). We know by Axioms (9.3) and (9.4) that ∃ α ∈ (0, 1) satisfying:

b ∼ (α ◦ a, (1− α) ◦ c) (29)

If we let u be some VNM representation of �. Then the preceding indifference relation implies:

u(b) = u(α ◦ a, (1− α) ◦ c)
= αu(a) + (1− α)u(c) (By Expected Utility Property) (30)

We can rearrange this equality to:

u(a)− u(b)

u(b)− u(c)
=

1− α
α

(31)

Therefore, the ratios of the differences between the preceding utility values are determined by
α. Since α is uniquely determined by the preferences of the decision maker, so is the preceding
ratio of utility differences. In other words, VNM utility representations provide more than just an
ordinal indication, and therefore monotone transformations might not yield another VNM utility
representation with the expected utility property. Nevertheless, we still have an analogous property:
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Theorem 9.2. VNM Utility Functions are Unique up to Positive Affine Transforma-
tions. Suppose that the VNM utility function u(•) represents �. Then the VNM utility function,
v(•), represents those same preferences if and only if for some scalar α and some scalar β > 0,

v(g) = α+ βu(g) (32)

for all gambles g.

So far, with the assumptions we have set on the agent’s binary comparisons between gambles
in the underlying preference relation, we still cannot use VNM utility functions for interpersonal
comparisons of well-being, nor can we measure the “intensity” with which one gamble is preferred
to another.

9.3 Risk Aversion

To establish a measure for how a decision maker reacts to risk, we focus on gambles that take wealth
as the set of outcomes, moreover, a positive one A = R+. A simple gamble now takes the form
(p1 ◦ w1, ..., pn, wn), where n is some positive integer, the wi’s are non-negative wealth levels, and
the non-negative probabilities, p1, ..., pn add up to one. We further assume that the individual’s
VNM utility function, u(•), is differentiable with u′(w) > 0 for all levels of wealth w.

The expected value of a simple gamble g, offering wi with probability pi, is given by E[g] =
n∑
i=1

piwi. Suppose the agent is given a choice between accepting a gamble g, or receiving with

certainty the expected value of g. If u(•) is the agent’s VNM utility function, we can evaluate
these two alternatives:

u(g) =
n∑
i=1

piu(w1) (33)

u (E[g]) = u

(
n∑
i=1

piwi

)
(34)

Equation (33) is known as the VNM utility of the gamble, while the second is the VNM utility
of the gamble’s expected value. According to the axioms of decision making under uncertainty, an
agent will prefer the option with the highest expected utility. If someone would rather receive the
expected value of the gamble with certainty than face the gamble’s risk, the agent is said to be
risk averse. If the agent would take the bet rather than the expected utility with certainty, the
agent is said to be risk loving.

We can focus on the characteristics of u on GS to capture an individual’s attitude towards risk:

Definition 9.3. Risk Aversion, Risk Neutrality, and Risk Loving. Let u(•) be an indi-
vidual’s VNM utility function for gambles over non-negative levels of wealth. Then for the simple
gamble g = (p1 ◦ w1, ..., pn ◦ wn), the individual is said to be:

1. risk averse at g if u(E[g]) > u(g),

2. risk neutral at g if u(E[g]) = u(g),

3. risk loving at g if u(E[g]) < u(g)

Each of these attitudes towards risk can be linked to a particular property of the VNM, so we
can also say:
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1. risk averse if the VNM utility function is strictly concave in wealth,

2. risk averse if the VNM utility function is linear in wealth,

3. risk averse if the VNM utility function is strictly convex in wealth

When an individual faces the choice of taking a gamble, there would be some amount of wealth
offered with certainty that’d make her indifferent between taking the gamble or that wealth with
certainty. We call that amount the certainty equivalent. If a person is risk averse and strictly
prefers more money to less, they would value the certainty amount more that the expected value
of the gamble, and they would be willing to pay in order to avoid the gamble’s risk:

Definition 9.4. Certainty Equivalent and Risk Premium. The certainty equivalent of any
simple gamble, g, over wealth level is an amount of wealth, CE, offered with certainty, such that
u(g) ≡ u(CE). The risk premium is an amount of wealth, P, such that u(g) ≡ u(E[g]−P ). Clearly,
P ≡ E[g]− CE.

When making decision under uncertainty, we are not only concerned with establishing that if
an individual is risk averse or not, we would also like to have a measure of risk aversion. To do so,
we use the Arrow-Pratt measure of risk aversion.

Definition 9.5. The Arrow-Pratt measure of absolute risk aversion is given by:

Ra(w) =
−u′′(w)

u′(w)
(35)

The sign of this indicator tells the individual’s attitude towards risk: Ra(w) is positive, negative,
or zero if the agent is risk averse, risk loving, or risk neutral, respectively. Moreover, any affine
transformation will leave this measure unchanged. Nonetheless, Ra(w) is only a local measure of
risk aversion, so it need not to be the same at every level of wealth. For example, one could expect
that attitudes towards risk vary according to the level of wealth.

We can say that a VNM utility function displays constant (CARA), decreasing (DARA),
or increasing (IARA) absolute risk aversion over some domain of wealth if Ra(w) is constant,
decreasing, or increasing in wealth over a given wealth domain, respectively. We can refine our
measure of risk aversion by including a the notion of relative risk aversion:

Definition 9.6. The Arrow-Pratt measure of relative risk aversion is given by:

Rr(w) = w
−u′′(w)

u′(w)
(36)

Similarly, we can observe how the degree of risk aversion relates to given levels of wealth. We say
that a VNM utility function displays constant (CRRA), decreasing (DRRA), or increasing
(IRRA) relative risk aversion over some domain of wealth if Rr(w) is constant, decreasing, or
decreasing over a given wealth domain, respectively.
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